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Density distributions are used throughout physics to describe the profile and range of physical quantities
related to particles in the course of their motion. The first density distribution encountered by most physics
students is the Maxwellian velocity distribution. In many cases, it is soon followed with an introduction
to the Maxwellian energy distribution. Afterwards, comparisons are made in the course of describing these
density distributions. One misperception is that the “peak of one distribution” corresponds to the “peak of
the other distribution,” and this is certainly not the case when comparing density functions. In the course of
this paper it is shown that the peak of the Maxwellian velocity distribution does not correspond to the peak
of the energy distribution by the simple relationship ε = 1

2mv
2. The paper continues with a simple example

describing how the peaks are related and how the probabilities are preserved between the two distributions.

The purpose of this paper is to examine equations
18.32 and 18.33 in the 14th edition of University
Physics by Young and Freedman1 and “strongly
suggest” that a correction be made. The first
equation (18.32) is the Maxwellian velocity dis-
tribution which is correct. However, the second
equation (18.33) is presented as the Maxwellian
(kinetic) energy distribution, which is incorrect
for the reasons shown below. The correct en-
ergy distribution is derived and verified during
the course of this examination.

I. MAXWELLIAN VELOCITY DISTRIBUTION

The Maxwellian velocity distribution is correctly
shown in Eq. 18.32.

f(v) = 4π
( m

2πkT

)3/2
v2 e−

mv2

2kT (1)

It has all the “right” properties. For example, it is nor-
malized. ∫ ∞

0

f(v)dv = 1 (2)

Also f(v) has the correct physical units prob./unit
velocity.

When examining the Maxwellian energy distribution
shown in Eq. 18.33 from University Physics, we encounter
some major incongruities.

f∗(ε) =
8π

m

( m

2πkT
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ε e−ε/kT (3)

First of all, the normalization is:∫ ∞
0

f∗(ε) dε = 2

√
2kTm

π
6= 1 (4)

which means the function f∗(ε) is not properly
normalized. Furthermore, the units of f∗(ε) are

probability/unit velocity which is obviously incor-
rect. The units of f(ε) should be probability/energy.
If the function f∗(ε) is used to calculate the mean energy
of a molecule, we encounter another erroneous result:∫ ∞

0

f∗(ε) ε dε = 4 (kT )
3/2
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π
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So, obviously there is something wrong with the
Maxwellian energy distribution f∗(ε) as presented in Uni-
versity Physics Eq. 18.33.

II. MAXWELLIAN ENERGY DISTRIBUTION

The correct procedure for generating f(ε) from f(v) is
to equate probabilities and not probability densities. In
other words,

f(v) dv = f(ε) dε (6)

This is a subtle but important point because probabilities
must be conserved between the velocity and the energy
distributions. In order to calculate the “correct” f(ε)
we start with Eq. 6 and use the following relationships:
ε = 1

2mv
2, dε = mv dv, v =

√
2ε/m, and dv = dε/

√
2mε.

Making these substitutions to Eq. 6, we find that:

f(v) dv =
2√
π

1

(kT )
3/2

ε1/2 e−ε/kT dε (7)

where we can extract f(ε):

f(ε) =
2√
π

1

(kT )
3/2

ε1/2 e−ε/kT (8)

One can easily check the normalization:∫ ∞
0

f(ε) dε = 1

and find it is indeed properly normalized. One can
also check the units of f(ε) and show that they are
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probability/unit energy, as they should be. Further-
more, if one calculates the mean kinetic energy of a gas
molecule one correctly obtains:∫ ∞

0

ε f(ε) dε =
3

2
kT

and not the incorrect result shown in Eq. 5.
The key feature missing from Eq. 18.33 from Uni-

versity Physics is the the Jacobian of transformation,
v dv = dε/m. It was not included when changing be-
tween independent variables, namely velocity → energy.

III. COMPARING VELOCITY AND ENERGY

Both of the Maxwellian distributions have their merits.
The velocity distribution f(v) gives the reader a sense of
the range of speeds for the molecules in thermodynamic
equilibrium at a temperature T . Meanwhile, the energy
distribution f(ε) is a universal curve for all species of
molecules occupying the same volume at temperature T ,
independent of mass.

In the University Physics textbook, the text goes on
to say that, “You can prove that the peak of each curve
occurs where ε = kT .” However, this is an incorrect
statement. The peak of f(v) occurs at:

vmp =

√
2kT

m

while the peak of f(ε) occurs at:

εmp =
1

2
kT

and these peak values correspond to different kinetic
energies, kT and 1

2kT respectively. This difference is il-
lustrated in Figs. 1 and 2.

A certain amount of care must be taken when inter-
preting density functions because the casual observer
typically looks at f(v) and presumes that the largest
fraction of molecules are moving at the peak velocity
vmp =

√
2kT/m. Indeed they are; however, the observer

has tacitly assumed that the velocities are measured in
equal velocity bins dv.

Let’s investigate how these fixed velocity bins trans-
form to the energy representation f(ε). When the ve-
locity bins (a, b, and c) are transformed to the energy
distribution as show in Fig. 2, we observe three things.

First, the peak value of f(v) (vmp =
√

2kT/m) has a
corresponding kinetic energy that does not coincide with
the peak value of f(ε), εmp = 1

2kT . Instead, its cor-
responding energy is kT . Second, the probabilities are
equal to the areas (a, b, and c) and the individual areas
are preserved between Figs. 1 and 2. While it may not
be obvious, bin “b” has the largest area in both the ve-
locity and the energy distributions, thus preserving the
notion that particles with velocities near vmp appear with

FIG. 1. Maxwellian velocity distribution f(v) with probabil-
ities (i.e., areas) centered at three velocities (1,

√
2 and

√
3)

times
√
kT/m. The width of each bin is fixed to 0.1 units

with the most-probable velocity occurring at
√

2kT/m.

FIG. 2. Maxwellian energy distribution with probabilities
(i.e., areas) mapped from the three velocity bins shown in
Fig. 1. The “mapped” energies are located at ( 1

2
, 1, and 3

2
)

times kT . The width of each bin varies due to the Jacobian
of transformation dε = mv dv, with the most-probable energy
occurring at kT/2.

the largest probability in the energy distribution. Third,
while the width of the bins in Fig. 2 are monotonically
increasing (due to the Jacobian), their areas (i.e., their
probabilities) are also monotonically decreasing for ener-
gies ε > kT on the energy scale.

IV. CONCLUSIONS

Both of these distributions have their respective ap-
plications. If the velocity of a gas is measured in the
lab, and the velocity “bites” over which the velocities are
sampled are identical (i.e., the bin widths are the same),
then one will produce the velocity distribution shown in
Fig. 1. However, if the measuring device is measuring
the kinetic energy of the gas and the energy “bites” over
which the energies are sampled have the same energy
width, then one will reproduce the distribution shown in
Fig. 2.

This same technique of changing variables occurs fre-
quently in modern physics, for example, when transform-
ing the Planck blackbody spectrum between wavelengths
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(λ), and frequencies (ν). Once again, the peak wave-
length in the spectral intensity I(λ, T ) does not corre-
spond to the peak frequency in the spectral intensity
I(ν, T ), (i.e., λmax 6= c/νmax. It depends on whether the
device making the measurement is recording the data in

equal units of wavelength, or equal units of frequency.

1H. D. Young and R. A. Freedman, University Physics, 14th Ed.
(Pearson, 2016).


